设为首页 - 加入收藏
AD 1000x90
您的当前位置:首页 > 职场百科 > 正文

那些想改变驾驶的年轻人

来源:简单百科整理 编辑:www.pubyd.com 时间:2019-04-14

  从苏州相城区高铁新城兆润领寓21层的Momenta办公室望出去,外面一半是田园河流,一半是厂房工地。楼下停着三辆Momenta自动驾驶测试轿车和另一家科技公司的自动驾驶卡车。

  离苏州工业园区十多公里的这片区域,因为毗邻高铁苏州北站近些年才被逐渐开发,已经有二十多家自动驾驶相关企业入驻,地方政府打造智能驾驶产业集群的意图明确。相比更成熟的上海、苏州工业园区,它的优势是更优厚的条件和更多可塑性。

  3月25日,Momenta在这里举行发布会,为总部新大楼揭幕。落户近一年,公司已在这里建立起工程中心、产品中心和商务中心,搭建起大数据、大计算、大测试三大基础平台,部署规模化的车队,全面推动自动驾驶技术量产化。

  2016年创建Momenta时,CEO曹旭东30岁,创始团队都是与他相仿的年轻人,他们对这件事的判断是“技术可能10年时间会成熟,产品、商业和生态20年时间会成熟。这么有挑战的一件事,要聚集一批牛人把这件事做成。”

  根据创业团队的技术强项,Momenta选择了“打造自动驾驶大脑”的Tier 2定位——聚焦基于深度学习的环境感知、高精度地图和规划决策技术。在量产领域,Momenta专注软件、算法与数据,在高速、泊车和城市道路场景,为Tier 1和OEM提供自动驾驶解决方案。

  曹旭东认为他们躬耕的领域也是整个自动驾驶产业链创造最多新增价值的环节。目前公司累计完成融资超过2亿美元,估值超过10亿美元。

  25日的发布会上,Momenta首次发布了结构化道路的自动驾驶解决方案 Mpilot,采用符合车规级、可量产的感知方案,其利用摄像头、毫米波雷达、高精度地图与定位技术融合的方式,能够实现高速公路上下匝道、主动变道、应对紧急加塞等复杂场景的自动驾驶,并在雨天、黄昏繁忙时段、夜晚等极端环境下依然保持良好的性能。

  据称,这是国内首个利用可量产传感器实现自主上下匝道及智能变道的方案。

  高速公路试乘

  发布会前,《汽车商业评论》记者在一辆Momenta自动驾驶实路测试车上感受了Mpilot。

  试乘路程40多公里,用时约一小时,进入高速公路后全程开启Mpilot,司机双手离开方向盘,双脚离开油门刹车。主要感受如下:

  1.加速、刹车、停车、启动、拐弯、匝道行驶等动作线性柔顺且高效,非常接近人类驾驶风格,没有机器的顿挫感,没有急刹急停急加速,弯道轨迹与速度控制得很合理,乘坐的舒适感让人印象深刻。

  2.遇堵车时,Mpilot控制车辆也非常接近人类,无论行驶还是停车离前车距离相对很近,减少被加塞的概率。这与我们试乘过的另一家自动驾驶企业测试时车辆离前车老远就开始减速,最终的停车点也远离前车相比要更智能、更自然。

  3.自主变道,自主控制速度。本次测试设定的最高时速是80公里,车辆会在路况允许时尽量达到这个速度。前方有车时它会减速,如果前车缓慢、旁边车道有足够空间,车辆就会主动变道到临近车道加速、超车,变道前自动打转向灯。

  4.上下匝道自如。试乘中多次上下匝道,车辆能提前并线、减速,,与前车保持合理距离,还能以40公里时速在弯道上流畅行驶。

  比较有意思的一个细节是,一次从匝道驶入主路时,主路最右道的车辆非常密集,以比较高的速度依次从测试车左侧飞驰而过,测试车一直没有找到变道切入的机会。匝道即将到尽头,车辆不得不停了下来,等待数秒后终于抓住空档变道成功,驶进主路。

  这跟人类在相同场景下的驾驶非常接近了,匝道入主路需要有勇有谋。

  为了量产

  这套Mpilot系统在前向、后向和侧向配置了 6 个摄像头,车身周围 4 个环视鱼眼摄像头,车身四角和前向一共安装了 5 个毫米波雷达。这就是感知方面的所有硬件,没有激光雷达。

  该系统能探测到前后150米、左右多车道的车辆和车道线信息,并对移动目标跟踪预测。鱼眼摄像头用于检测10米内的车辆位置,对变道加塞进行判断和决策。

  硬件成本是多少?曹旭东说“摄像头平均20美元,10个一共200美元,5个毫米波雷达总价也是200美元。”以上都是量产价格。

  而在激光雷达领域,Velodyne最受欢迎的16线激光雷达曾在2018年初宣布降价一半,但降价后它的价格仍需3999美元。因为激光雷达成本高昂的原因,Mpilot量产方案里中并没有使用。曹旭东认为,“量产和规模化是自动驾驶落地的关键,摄像头和毫米波雷达融合的感知方案能够让整车厂率先量产,这是最重要的。如果激光雷达便宜了,把激光雷达再加进来很容易,但如果一开始做的这套系统就必须使用激光雷达,不用激光雷达就没法跑了,(那这样的系统)现阶段是没法量产的。”

  Mpilot的所有摄像头都是单目,Momenta的解决办法是使用先进的算法和海量的数据来解决3D场景重建的精度和鲁棒性的问题。

  不采用双目、三目摄像头,而是用算法弥补,同样是基于成本与量产考虑。

  在计算硬件上,曹旭东说很多自动驾驶测试车上采用的单片GPU成本需要几百美元,几片加起来动辄上千美元,功耗是百瓦级。“我们的算法模型适用的芯片功耗只有几瓦,量产下来的价格会低于100美元。”

  数据与众包

  环境感知、高精度地图、决策规划需要软件算法,也需要海量的大数据支持深度学习,就像AlphaGo阅读越多的棋谱就会对每一步棋做出更优判断。

  Momenta的测试车曾经遇到前面的大巴车尾部印着巨幅中国好声音导师的人像广告,起初摄像头会把人像误读为行人,因为尺寸原因还会把跟“人”的距离判断得很近。

  测试车还遇到过三轮车上运动物的情况,如果系统检测出的是独立的动物而没有识别出动物与三轮车的包含关系,很可能采取不必要的刹车措施。类似的还有大卡车上运载多辆小轿车在路上跑。

  Momenta的L4级自动驾驶路试车,车顶有激光雷达

  这类特殊情况还包括全国各地不同的交通信号系统等,只有上路真正去跑、跑够一定时间和里程才能遇到、采集并进行深度学习算法训练,最终作出正确的驾驶决策。

  只用测试车去采集是远远不够的。为了更快获取海量感知数据,Momenta采取了众包模式,目前已有众包设备运行在全国20多个城市的各种车辆上,采集各种路况数据丰富数据库。

  而且这个产品先于公司其他产品实现了商业化。“我们做了一款产品,是给车队做安全管理的,一个前视摄像头一个内视摄像头,前视的摄像头看路,内视的摄像头看人。”曹旭东说。

  内视摄像头和前视摄像头能够帮助车队提升驾驶安全,同时也为Momenta获取到更多的数据。

  高精地图

  高精地图是自动驾驶不可获取的必要条件,也是Momenta三大核心技术之一。

  2018年下半年,成立仅2年的Momenta拿到了导航电子地图测绘资质。

  截至目前,我国具有该测绘资质的单位只有17家,其中4家为事业单位,4家是BAT和滴滴子公司拥有强大背景,Momenta是17家中极少数的自动驾驶初创企业。

  曹旭东称他们团队所研发的地图精度已达到10厘米以内,定位精度大多数情况下小于10厘米。

  他认为除了精确定位、精确导航,Momenta为高精地图提供了新的价值,包括数据更新、动态图层、经验图层、定位图层。

栏目分类

网站首页-版权申明-联系我们-网站地图-XML地图

健康百科-母婴百科-职场百科-情感百科-知识百科-历史百科-民俗百科-百科词条

Copyright © PUBYD.COM 版权所有 浙ICP备09065192号

Top